if you want to remove an article from website contact us from top.

# a very long, cylindrical wire of radius r carries a current i0 uniformly distributed across the cross section of the wire.

Category :

### James

Guys, does anyone know the answer?

get a very long, cylindrical wire of radius r carries a current i0 uniformly distributed across the cross section of the wire. from EN Bilgi.

## A very long cylindrical wire of radius R carries a current I0 uniformly distributed across the cross

Click here👆to get an answer to your question ✍️ A very long cylindrical wire of radius R carries a current I0 uniformly distributed across the cross - section of the wire, calculate the magnetic flux through a rectangle that has one side of length w s running down the centre of the wire and another side of length R, shown in figure

A very long cylindrical wire of radius R carries a current I

Question 0 ​

uniformly distributed across the cross-section of the wire, calculate the magnetic flux through a rectangle that has one side of length w s running down the centre of the wire and another side of length R, shown in figure

A

4π μ 0 ​ I 0 ​ ×wR ​

B

4π μ 0 ​ I 0 ​ w ​

C

4πw μ 0 ​ I 0 ​ R ​

D

## None of these

Medium Open in App Solution Verified by Toppr

Correct option is C)

Current =I 0 ​ φ= magnetic flux length =W another side =L 4πW μ 0 ​ I 0 ​ R 2 ​ φ=r 0 ​ nI = 4π μ 0 ​ ​ ×                = 4π μ 0 ​ ​ ×I 0 ​ × WR R 2 ​ = 4π μ 0 ​ ​ ×I 0 ​ × W R ​

Solve any question of Electromagnetic Induction with:-

Patterns of problems

>

0 0

Source : www.toppr.com

## A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find th

By Ampere's circuital law intB.dl = muoi For given conditions B.dA = muoi.dx rArr Bint dA = muoi int dx rArr B.2pib^2 = muoia rArr B = (muoia)/(2pib^2).

Home English Class 12 Physics Chapter

Magnetic Field Due To Current

A long, cylindrical wire of ra...

## A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.

Step by step solution by experts to help you in doubt clearance & scoring excellent marks in exams.

Updated On: 12-03-2022

Get Answer to any question, just click a photo and upload the photo

and get the answer completely free,

Watch 1000+ concepts & tricky questions explained!

Text Solution Solution

By Ampere's circuital law

∫B.dl= μ o i ∫B.dl=μoi

For given conditions B.dA = mu_oi.dx

rArr Bint dA = mu_oi int dx

rArr B.2pib^2 = mu_oia

rArr B = (mu_oia)/(2pib^2).`

## Related Videos

647763383 4.0 K+ 9.1 K+ 3:57

A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.

642597593 6.4 K+ 8.3 K+ 2:17

A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.

647478364 8.9 K+ 9.8 K+ 3:03

A long straight solid metal wire of radius R carries a current I, uniformly distributed over its circular cross-section. Find the magnetic field at a distance r from axis of wire inside the wire

642597541 6.2 K+ 9.9 K+ 3:45

A long, straight wire of radius R carries a current distributed uniformly over its cross section. The magnitude of the magnetic field is

647763331 6.8 K+ 7.7 K+ 2:13

A long, straight wire of radius R carries a current distributed uniformly over its cross section. The magnitude of the magnetic field is

644175632 800+ 5.1 K+

A long straight wire of radius R carries a current distributed uniformly over its cross -section. The magnitude of magnetic field is

## Very Important Questions

सरल रेखा में गतिमान एक कण का त्वरण (a) समय

(t) (t)

ग्राफ संलग्न चित्र में प्रदर्शित है। कण का प्रारम्भिक वेग 2 मीटर/सेकण्ड है। ज्ञात कीजिए (i)

t=3 t=3 सेकण्ड तथा t=6 t=6

सेकण्ड पर कण का वेग (ii)

t=0 t=0 से t=6 t=6

सेकण्ड के बीच कण का औसत त्वरण।

X-अक्ष के अनुदिश गति कर रहे कण की स्थिति निम्न समीकरण द्वारा व्यक्त है

x=A t 3 +B t 2 +Ct+D x=At3+Bt2+Ct+D जहां x x मीटर में तथा t t

सेकण्ड में है। नियतांक A,B,C व D के आंकिक मान क्रमशः 1,4,-2 व 5 हैं ज्ञात कीजिए

(i) A,B,C व D के विमीय सूत्र।

(ii) t=4 t=4

सेकण्ड पर कण का वेग तथा त्वरण। 1

(iii) प्रथम 4 सेकण्ड में कण् का औसत वेग।

(iv) प्रथम 4 सेकण्ड में कण का औसत त्वरण।

एक कण प्रारम्भिक वेग 5 मीटर/सेकण्ड तथा एकसमान त्वरण्

2 मीटर/सेकण्ड 2 2मीटर/सेकण्ड2 से +X +X

अक्ष के अनुदिश गति प्रारम्भ करता है। ज्ञात कीजिए-

(A) 2 सेकण्ड बाद कण का वेग।

(B) प्रथम 3 सेकण्ड में कण का विस्थापन तथा तय की गई दूरी।

(C) कितने समय बाद कण का वेग 15 मीटर/सेकण्ड होगा?

(D) 21 मीटर/सेकण्ड वेग प्राप्त करने तक कण कितनी दूरी तय करेगा?

(E) चौथे सेकण्ड में कण कितनी दूरी तय करता है?

सरल रेखा में एकसमान त्वरण से गतिमान एक कण का क्षण

t t

पर वेग 10 मीटर/सेकण्ड है। 5 सेकण्ड बाद वेग 20 मीटर/सेकण्ड हो जाता है। क्षण

t t

से 3 पहले कण का वेग क्या था?

सरल रेखा में गतिमान कण का क्षण

t=0 t=0

सेकण्ड पर वेग 10 मीटर/सेकण्ड हैं कण एकसमान त्वरण

4 मीटर/सेकण्ड 2 4मीटर/सेकण्ड2

के अन्तर्गत गतिमान है।

(i) t=3 t=3 से t=5 t=5

सेकण्ड के बीच कण का औसत वेग क्या है?

(ii) दूसरे सेकण्ड में कण का औसत वेग क्या है?

एक कण विरामावस्था से एकसमान तवरण से गति प्रारम्भ करता है।

t t

सेकण्ड पश्चात कण का वेग 100 मीटर/सेकण्ड तथा इसके 1 सेकण्ड बाद कण का वेग 150 मीटर/सेकण्ड हो जाता है। ज्ञात कीजिए।

(i) कण का त्वरण (ii)

(t+1) (t+1)

वें सेकण्ड में कण द्वारा तय दूरी।

## FAQs on Magnetic Field Due To Current

Magnetic Force

FLEMING'S LEFT HAND RULE

Right Hand Rule

MOTION OF CHARGED PARTICLE IN UNIFORM MAGNETIC FIELD WHEN V AND B ARE PARALLEL/ANTIPARALLEL)

MOTION OF CHARGED PARTICLE IN UNIFORM MAGNETIC FIELD WHEN V AND B ARE PERPENDICULAR)

MOTION OF CHARGED PARTICLE IN UNIFORM MAGNETIC FIELD WHEN V AND B ARE AT SOME ANGLE THAN 0, 90 AND 180

Magnetic Force On A Current Carrying Conductor

Magnetic Dipole Moment

Magnetic Dipole Moment In 3d

Magnetic Dipole In Uniform Magnetic Field

Source : www.doubtnut.com

## SOLVED:A very long, cylindrical wire of radius R carries a current I_{0} uniformly distributed across the cross scction of the wire. Calculate the magnetic flux through a rectangle that has one side of length W running down the center of the wire and another side of length R , as shown in Fig. 29.49 (see Problem 29.7) .

VIDEO ANSWER: for this problem you consider a small strip offline W and what we are really just a small are from the axis of the wire as shown in the diagram the flux through this ship, Indy five. And if I we can w