in which kind of solution is the concentration of solutes the same inside and outside of the cell? isotonic hypertonic hypotonic concentrated
get in which kind of solution is the concentration of solutes the same inside and outside of the cell? isotonic hypertonic hypotonic concentrated from EN Bilgi.
Isotonic vs. Hypotonic vs. Hypertonic Solution
The effects of isotonic, hypotonic, and hypertonic extracellular environments on plant and animal cells is the same. However, due to the cell walls of plants, the visible effects differ. Although some effects can be seen, the rigid cell wall can hide the magnitude of what is going on inside.
Isotonic vs. Hypotonic vs. Hypertonic Solution
By: BD Editors
Reviewed by: BD Editors
Last Updated: October 4, 2019
The effects of isotonic, hypotonic, and hypertonic extracellular environments on plant and animal cells is the same. However, due to the cell walls of plants, the visible effects differ. Although some effects can be seen, the rigid cell wall can hide the magnitude of what is going on inside.
Osmosis and Diffusion
Osmosis has different meanings in biology and chemistry. For biologists, it refers to the movement of water across a semipermeable membrane. Chemists use the term to describe the movement of water, other solvents, and gases across a semipermeable membrane. Both biologists and chemists define diffusion as the movement of solute particles (dissolved materials) from an area of higher concentration to lower concentration until equilibrium is reached.
How Osmosis Works
Osmosis is a passive transport system, meaning it requires no energy. It causes water to move in and out of cells depending on the solute concentration of the surrounding environment. This movement is caused by a concentration gradient created when there are different solute concentrations inside and outside the cell. It doesn’t matter what dissolved materials make up the solute, only the overall concentration. It is important to note that cells do not regulate the movement of water molecules in and out of their intracellular fluid. They rely on other systems in the body (such as the kidneys) to provide an isotonic external environment (see below).
Isotonic Solution
A cell in an isotonic solution is in equilibrium with its surroundings, meaning the solute concentrations inside and outside are the same (iso means equal in Latin). In this state there is no concentration gradient and therefore, no large movement of water in or out. Water molecules do freely move in and out of the cell, however, and the rate of movement is the same in both directions.
Hypotonic Solution
A hypotonic solution has a lower solute concentration than inside the cell (the prefix hypo is Latin for under or below). The difference in concentration between the compartments causes water to enter the cell. Plant cells can tolerate this situation better than animal cells. In plants, the large central vacuole fills with water and water also flows into the intercellular space. The combination of these two effects causes turgor pressure which presses against the cell wall causing it to bulge out. The cell wall helps keep the cell from bursting. However, if left in a highly hypertonic solution, an animal cell will swell until it bursts and dies.
Hypertonic Solution
In Latin, the prefix hyper means over or above. Hypertonic solutions have a higher solute concentration than inside the cell. This causes water to rush out making the cell wrinkle or shrivel. This is clearly seen in red blood cells undergoing a process called crenation. Plant cells in a hypertonic solution can look like a pincushion because of what’s going on inside. The cell membrane pulls away from the cell wall but remains attached at points called plasmodesmata. Plasmodesmata are tiny channels between plant cells that are used for transport and communication. When the inner membrane shrinks, it constricts the plasmodesmata resulting in a condition called plasmolysis.
Comparison Chart
Isotonic Solution Hypotonic Solution Hypertonic Solution
High level of solutes outside of the cell No No Yes
Low level of solutes outside of the cell No Yes No
Water movement depends on the type of solute No No No
If uncontrolled, may lead to cell death No Yes Yes
Can cause the cell to wrinkle/shrivel No No Yes
Can cause the cell to swell/burst No Yes No
In plants, results in plasmolysis No No Yes
In plants, results in turgor pressure inside the cell No Yes No
Causes water movement via osmosis No Yes Yes
Represents a homeostatic state Yes No No
The image above shows what happens to a cell in isotonic, hypertonic, and hypotonic solutions.
References
OpenStax College. (2018). Anatomy & Physiology. Houston, TX. OpenStax CNX. Retrieved from http://cnx.org/contents/[email protected]
Tonicity. (n.d.). In Wikipedia. Retrieved April 17, 2018 from https://en.wikipedia.org/wiki/Tonicity
Cite This Article
MLAAPAChicago
Biologydictionary.net Editors. "Isotonic vs. Hypotonic vs. Hypertonic Solution." Biology Dictionary, Biologydictionary.net, 22 Apr. 2018, https://biologydictionary.net/isotonic-vs-hypotonic-vs-hypertonic-solution/.
Biologydictionary.net Editors. (2018, April 22). Isotonic vs. Hypotonic vs. Hypertonic Solution. Retrieved from https://biologydictionary.net/isotonic-vs-hypotonic-vs-hypertonic-solution/
Biologydictionary.net Editors. "Isotonic vs. Hypotonic vs. Hypertonic Solution." Biology Dictionary. Biologydictionary.net, April 22, 2018. https://biologydictionary.net/isotonic-vs-hypotonic-vs-hypertonic-solution/.
Subscribe to Our Newsletter
Source : biologydictionary.net
Tonicity: hypertonic, isotonic & hypotonic solutions (article)
Osmosis and tonicity. Hypertonic, isotonic, and hypotonic solutions and their effect on cells.
Introduction
Have you ever forgotten to water a plant for a few days, then come back to find your once-perky arugula a wilted mess? If so, you already know that water balance is very important for plants. When a plant wilts, it does so because water moves out of its cells, causing them to lose the internal pressure—called turgor pressure—that normally supports the plant.
Why does water leave the cells? The amount of water outside the cells drops as the plant loses water, but the same quantity of ions and other particles remains in the space outside the cells. This increase in solute, or dissolved particle, concentration pulls the water out of the cells and into the extracellular spaces in a process known as osmosis.
Formally, osmosis is the net movement of water across a semipermeable membrane from an area of lower solute concentration to an area of higher solute concentration. This may sound odd at first, since we usually talk about the diffusion of solutes that are dissolved in water, not about the movement of water itself. However, osmosis is important in many biological processes, and it often takes place at the same time that solutes diffuse or are transported. Here, we’ll look in more detail at how osmosis works, as well as the role it plays in the water balance of cells.
How it works
Why does water move from areas where solutes are less concentrated to areas where they are more concentrated?
This is actually a complicated question. To answer it, let’s take a step back and refresh our memory on why diffusion happens. In diffusion, molecules move from a region of higher concentration to one of lower concentration—not because they’re aware of their surroundings, but simply as a result of probabilities. When a substance is in gas or liquid form, its molecules will be in constant, random motion, bouncing or sliding around one another. If there are lots of molecules of a substance in compartment A and no molecules of that substance in compartment B, it’s very unlikely—impossible, actually—that a molecule will randomly move from B to A. On the other hand, it’s extremely likely that a molecule will move from A to B. You can picture all of those molecules bouncing around in compartment A and some of them making the leap over to compartment B. So, the net movement of molecules will be from A to B, and this will be the case until the concentrations become equal.
In the case of osmosis, you can once again think of molecules—this time, water molecules—in two compartments separated by a membrane. If neither compartment contains any solute, the water molecules will be equally likely to move in either direction between the compartments. But if we add solute to one compartment, it will affect the likelihood of water molecules moving out of that compartment and into the other—specifically, it will reduce this likelihood.
Why should that be? There are some different explanations out there. The one that seems to have the best scientific support involves the solute molecules actually bouncing off the membrane and physically knocking the water molecules backwards and away from it, making them less likely to cross
^{1,2} 1,2
start superscript, 1, comma, 2, end superscript
.
Regardless of the exact mechanisms involved, the key point is that the more solute water contains, the less apt it will be to move across a membrane into an adjacent compartment. This results in the net flow of water from regions of lower solute concentration to regions of higher solute concentration.
Illustration of osmosis. A beaker is divided in half by a semi-permeable membrane. In the left—initial—image, the water level is equal on both sides, but there are fewer particles of solute on the left than on the right. In the right—final—image, there has been a net movement of water from the area of lower to the area of higher solute concentration. The water level on the left is now lower than the water level on the right, and the solute concentrations in the two compartments are more equal.
Image credit: OpenStax Biology
This process is illustrated in the beaker example above, where there will be a net flow of water from the compartment on the left to the compartment on the right until the solute concentrations are nearly balanced. Note that they will not become perfectly equal in this case because the hydrostatic pressure exerted by the rising water column on the right will oppose the osmotic driving force, creating an equilibrium that stops short of equal concentrations.
Osmolarity
Osmolarity describes the total concentration of solutes in a solution. A solution with a low osmolarity has fewer solute particles per liter of solution, while a solution with a high osmolarity has more solute particles per liter of solution. When solutions of different osmolarities are separated by a membrane permeable to water, but not to solute, water will move from the side with lower osmolarity to the side with higher osmolarity.Three terms—hyperosmotic, hypoosmotic, and isoosmotic—are used to describe relative osmolarities between solutions. For example, when comparing two solution that have different osmolarities, the solution with the higher osmolarity is said to be hyperosmotic to the other, and the solution with lower osmolarity is said to be hypoosmotic. If two solutions have the same osmolarity, they are said to be isoosmotic.
8.4: Osmosis and Diffusion
Fish cells, like all cells, have semipermeable membranes. Eventually, the concentration of "stuff" on either side of them will even out. A fish that lives in salt water will have somewhat …
8.4: Osmosis and Diffusion
Last updated Aug 13, 2020
8.3: Le Châtelier's Principle
8.5: Acid-Base Definitions
Allison Soult
University of Kentucky
Learning Outcomes
Define osmosis and diffusion.
Distinguish among hypotonic, hypertonic, and isotonic solutions.
Describe a semipermeable membrane.
Predict behavior of blood cells in different solution types.
Describe flow of solvent molecules across a membrane.
Identify the polar and nonpolar regions of a cell membrane.
Explain the components present in a phospholipid.
Fish cells, like all cells, have semipermeable membranes. Eventually, the concentration of "stuff" on either side of them will even out. A fish that lives in salt water will have somewhat salty water inside itself. Put it in freshwater, and the freshwater will, through osmosis, enter the fish, causing its cells to swell, and the fish will die. What will happen to a freshwater fish in the ocean?
Osmosis
Imagine you have a cup that has
100mL 100mL water, and you add 15g 15g
of table sugar to the water. The sugar dissolves and the mixture that is now in the cup is made up of a solute (the sugar) that is dissolved in the solvent (the water). The mixture of a solute in a solvent is called a solution.
Imagine now that you have a second cup with
100mL 100mL
of water, and you add
45g 45g
of table sugar to the water. Just like the first cup, the sugar is the solute, and the water is the solvent. But now you have two mixtures of different solute concentrations. In comparing two solutions of unequal solute concentration, the solution with the higher solute concentration is hypertonic, and the solution with the lower solute concentration is hypotonic. Solutions of equal solute concentration are isotonic. The first sugar solution is hypotonic to the second solution. The second sugar solution is hypertonic to the first.
You now add the two solutions to a beaker that has been divided by a semipermeable membrane, with pores that are too small for the sugar molecules to pass through, but are big enough for the water molecules to pass through. The hypertonic solution is one one side of the membrane and the hypotonic solution on the other. The hypertonic solution has a lower water concentration than the hypotonic solution, so a concentration gradient of water now exists across the membrane. Water molecules will move from the side of higher water concentration to the side of lower concentration until both solutions are isotonic. At this point, equilibrium is reached.
Red blood cells behave the same way (see figure below). When red blood cells are in a hypertonic (higher concentration) solution, water flows out of the cell faster than it comes in. This results in crenation (shriveling) of the blood cell. On the other extreme, a red blood cell that is hypotonic (lower concentration outside the cell) will result in more water flowing into the cell than out. This results in swelling of the cell and potential hemolysis (bursting) of the cell. In an isotonic solution, the flow of water in and out of the cell is happening at the same rate.
Figure 8.4.1 8.4.1
: Red blood cells in hypertonic, isotonic, and hypotonic solutions.
Osmosis is the diffusion of water molecules across a semipermeable membrane from an area of lower concentration solution (i.e., higher concentration of water) to an area of higher concentration solution (i.e., lower concentration of water). Water moves into and out of cells by osmosis.If a cell is in a hypertonic solution, the solution has a lower water concentration than the cell cytosol, and water moves out of the cell until both solutions are isotonic.
Cells placed in a hypotonic solution will take in water across their membranes until both the external solution and the cytosol are isotonic.
A red blood cell will swell and undergo hemolysis (burst) when placed in a hypotonic solution. When placed in a hypertonic solution, a red blood cell will lose water and undergo crenation (shrivel). Animal cells tend to do best in an isotonic environment, where the flow of water in and out of the cell is occurring at equal rates.